Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 343
Filter
1.
BMC Complement Med Ther ; 24(1): 172, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654265

ABSTRACT

BACKGROUND: To assess the efficacy of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin [BDC]) and their analogs (tetrahydrocurcumin [THC], tetrahydrodemethoxycurcumin [THDC], tetrahydrobisdemethoxycurcumin) in reducing inflammatory cytokines and their toxicity to primary human corneal limbal epithelial cells, these cells were cultured and exposed to these compounds. METHODS: The PrestoBlue assay assessed cell viability after treatment. Anti-inflammatory effects on hyperosmotic cells were determined using real-time polymerase chain reaction and significance was gauged using one-way analysis of variance and Tukey's tests, considering p-values < 0.05 as significant. RESULTS: Curcuminoids and their analogs, at 1, 10, and 100 µM, exhibited no effect on cell viability compared to controls. However, cyclosporin A 1:500 significantly reduced cell viability more than most curcuminoid treatments, except 100 µM curcumin and BDC. All tested curcuminoids and analogs at these concentrations significantly decreased mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, IL-17 A, matrix metallopeptidase-9, and intercellular adhesion molecule-1 after 90 mM NaCl stimulation compared to untreated cells. Furthermore, proinflammatory cytokine levels from hyperosmotic cells treated with 1, 10, and 100 µM curcumin, 100 µM BDC, 100 µM THC, 1 and 100 µM THDC mirrored those treated with cyclosporin A 1:500. CONCLUSION: The anti-inflammatory efficiency of 1 and 10 µM curcumin, 100 µM THC, 1 and 100 µM THDC was comparable to that of cyclosporin A 1:500 while maintaining cell viability.


Subject(s)
Anti-Inflammatory Agents , Cell Survival , Curcumin , Epithelial Cells , Humans , Curcumin/pharmacology , Curcumin/analogs & derivatives , Anti-Inflammatory Agents/pharmacology , Epithelial Cells/drug effects , Cell Survival/drug effects , Cytokines/metabolism , Limbus Corneae/drug effects , Cells, Cultured , Diarylheptanoids/pharmacology , Epithelium, Corneal/drug effects
2.
Inorg Chem ; 63(17): 7955-7965, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38634659

ABSTRACT

Curcuminoids and their complexes continue to attract attention in medicinal chemistry, but little attention has been given to their metabolic derivatives. Here, the first examples of (arene)Ru(II) complexes with curcuminoid metabolites, tetrahydrocurcumin (THcurcH), and tetrahydrobisdesmethoxycurcumin (THbdcurcH) were prepared and characterized. The neutral complexes [Ru(arene)(THcurc)Cl] and [Ru(arene)(THbdcurc)Cl] (arene = cymene, benzene, or hexamethylbenzene) were characterized by NMR spectroscopy and ESI mass spectrometry, and the crystal structures of the three complexes were determined by X-ray diffraction analysis. Compared to curcuminoids, these metabolites lose their conjugated double bond system responsible for their planarity, showing unique closed conformation structures. Both closed and open conformations have been analyzed and rationalized by using density functional theory (DFT). The cytotoxicity of the complexes was evaluated in vitro against human ovarian carcinoma cells (A2780 and A2780cisR), human breast adenocarcinoma cells (MCF-7 and MCF-7CR), as well as against non-tumorigenic human embryonic kidney cells (HEK293) and human breast (MCF-10A) cells and compared to the free ligands, cisplatin, and RAPTA-C. There is a correlation between cellular uptake and the cytotoxicity of the compounds, suggesting that cellular uptake and binding to nuclear DNA may be the major pathway for cytotoxicity. However, the levels of complex binding to DNA do not strictly correlate with the cytotoxic potency, indicating that other mechanisms are also involved. In addition, treatment of MCF-7 cells with [Ru(cym)(THcurc)Cl] showed a significant decrease in p62 protein levels, which is generally assumed as a noncisplatin-like mechanism of action involving autophagy. Hence, a cisplatin- and a noncisplatin-like concerted mechanism of action, involving both apoptosis and autophagy, is possible.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Curcumin , Drug Screening Assays, Antitumor , Ruthenium , Humans , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/analogs & derivatives , Curcumin/metabolism , Ruthenium/chemistry , Ruthenium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Diarylheptanoids/chemistry , Diarylheptanoids/pharmacology , Diarylheptanoids/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Cell Line, Tumor , Models, Molecular , Density Functional Theory , Cell Survival/drug effects , HEK293 Cells
3.
Stem Cell Res Ther ; 15(1): 60, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433217

ABSTRACT

BACKGROUND: The diarylheptanoid ASPP 049 has improved the quality of adult hematopoietic stem cell (HSC) expansion ex vivo through long-term reconstitution in animal models. However, its effect on hematopoietic regeneration from human induced pluripotent stem cells (hiPSCs) is unknown. METHOD: We utilized a defined cocktail of cytokines without serum or feeder followed by the supplementation of ASPP 049 to produce hematopoietic stem/progenitor cells (HSPCs). Flow cytometry and trypan blue exclusion analysis were used to identify nonadherent and adherent cells. Nonadherent cells were harvested to investigate the effect of ASPP 049 on multipotency using LTC-IC and CFU assays. Subsequently, the mechanism of action was explored through transcriptomic profiles, which were validated by qRT-PCR, immunoblotting, and immunofluorescence analysis. RESULT: The supplementation of ASPP 049 increased the number of phenotypically defined primitive HSPCs (CD34+CD45+CD90+) two-fold relative to seeded hiPSC colonies, indicating enhanced HSC derivation from hiPSCs. Under ASPP 049-supplemented conditions, we observed elevated HSPC niches, including CD144+CD73- hemogenic- and CD144+CD73+ vascular-endothelial progenitors, during HSC differentiation. Moreover, harvested ASPP 049-treated cells exhibited improved self-renewal and a significantly larger proportion of different blood cell colonies with unbiased lineages, indicating enhanced HSC stemness properties. Transcriptomics and KEGG analysis of sorted CD34+CD45+ cells-related mRNA profiles revealed that the Hippo signaling pathway is the most significant in responding to WWTR1/TAZ, which correlates with the validation of the protein expression. Interestingly, ASPP 049-supplemented HSPCs upregulated 11 genes similarly to umbilical cord blood-derived HSPCs. CONCLUSION: These findings suggest that ASPP 049 can improve HSC-generating protocols with proliferative potentials, self-renewal ability, unbiased differentiation, and a definable mechanism of action for the clinical perspective of hematopoietic regenerative medicine.


Subject(s)
Hippo Signaling Pathway , Induced Pluripotent Stem Cells , Adult , Animals , Humans , Cell Differentiation , Diarylheptanoids/pharmacology , Antigens, CD34
4.
Clin Nutr ESPEN ; 59: 96-106, 2024 02.
Article in English | MEDLINE | ID: mdl-38220413

ABSTRACT

BACKGROUND & AIMS: Turmeric (a source of curcumin) is an excellent food to modulate oxidative stress, inflammation, and gut dysbiosis in patients with chronic kidney disease (CKD). However, no studies report the benefits of curcumin in patients undergoing peritoneal dialysis (PD). This study aims to evaluate the effects of curcuminoid supplementation on oxidative stress, inflammatory markers, and uremic toxins originating from gut microbiota in patients with CKD undergoing PD. METHODS: This longitudinal, randomized, single-blind, placebo-controlled trial evaluated 48 patients who were randomized into two groups: Curcumin (three capsules of 500 mg of Curcuma longa extract, with 98.42 % total curcuminoids) or placebo (three capsules of 500 mg of starch) for twelve weeks. In the peripheral blood mononuclear cells (PBMCs), the transcriptional expression levels of Nrf2, HOX-1 and NF-κB were evaluated by quantitative real-time PCR. Oxidative stress was evaluated by malondialdehyde (MDA) and total Thiol (T-SH). TNF-α and IL-6 plasma levels were measured by ELISA. P-cresyl sulphate plasma level, a uremic toxin, was evaluated by high-performance liquid chromatography (HPLC) with fluorescent detection. RESULTS: Twenty-four patients finished the study: 10 in the curcumin group (57.5 ± 11.6 years) and 14 in the placebo group (56.5 ± 10.0 years). The plasma levels of MDA were reduced after 12 weeks in the curcumin group (p = 0.01), while the placebo group remained unchanged. However, regarding the difference between the groups at the endpoint, no change was observed in MDA. Still, there was a trend to reduce the p-CS plasma levels in the curcumin group compared to the placebo group (p = 0.07). Likewise, the concentrations of protein thiols, mRNA expression of Nrf2, HOX-1, NF-κB, and cytokines plasma levels did not show significant changes. CONCLUSION: Curcuminoid supplementation for twelve weeks attenuates lipid peroxidation and might reduce uremic toxin in patients with CKD undergoing PD. This study was registered on Clinicaltrials.gov as NCT04413266.


Subject(s)
Curcumin , Peritoneal Dialysis , Renal Insufficiency, Chronic , Uremia , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , NF-kappa B/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Leukocytes, Mononuclear/metabolism , Single-Blind Method , Inflammation , Oxidative Stress , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Diarylheptanoids/pharmacology , Diarylheptanoids/therapeutic use , Dietary Supplements , Uremia/drug therapy
5.
Phytochemistry ; 219: 113975, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215811

ABSTRACT

Two previously undescribed chain diarylheptanoid derivatives (2-3), five previously undescribed dimeric diarylheptanoids (4-8), together with one known cyclic diarylheptanoid (1) were isolated from Zingiber officinale. Their structures were elucidated by extensive spectroscopic analyses (HR-ESI-MS, IR, UV, 1D and 2D NMR) and ECD calculations. Biological evaluation of compounds 1-8 revealed that compounds 2, 3 and 4 could inhibit nitrite oxide and IL-6 production in lipopolysaccharide induced RAW264.7 cells in a dose-dependent manner.


Subject(s)
Zingiber officinale , Diarylheptanoids/pharmacology , Diarylheptanoids/chemistry , Magnetic Resonance Spectroscopy , Anti-Inflammatory Agents/pharmacology , Molecular Structure
6.
Chem Biol Interact ; 387: 110822, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38056805

ABSTRACT

Rheumatoid arthritis (RA) is a highly prevalent and chronic inflammatory synovial joint disease manifested by hyperplasia and continuous inflammation. Curcumin (Cur) has been studied for alleviating RA. However, poor stability and oral bioavailability restrict its therapeutic value. Bisdemethoxycurcumin (BDMC), a curcumin (Cur) derivative, exerts better stability and oral bioavailability than Cur. However, the efficacy of BDMC on RA has not been fully clarified. The aim of the study was to investigate the therapeutic effects and underlying mechanisms of BDMC on RA. The in-vivo anti-arthritic activity of BDMC was determined via adjuvant-induced arthritis (AIA) rat model. Paw swelling, body weight, arthritic index, and histopathological assessments were performed. RAW264.7 cell was stimulated by lipopolysaccharides (LPS) in vitro. The cell viability were determined by CCK8 assay, while the migration ability was determined using cell wound healing and transwell assays. Furthermore, in-vivo and in-vitro levels of pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) were assayed by ELISA, and that of IκBα, p-NF-κB, NF-κB, and COX-2 were assessed via Western blot or immunofluorescence. In AIA rat model, it suggested a higher anti-arthritic activity of BDMC than Cur, including amelioration of swelling in hind paws, reduced arthritic index, and alleviated histopathological injury in rats. Furthermore, BDMC also substantially decreased the levels of the aforementioned pro-inflammatory cytokines in both in-vivo and in-vitro, inhibited the IκBα degradation, down-regulated the COX-2 levels and p-NF-κB/NF-κB ratio in AIA rats and LPS-stimulated RAW264.7 cells. Additionally, BDMC showed an inhibitory effect on the migration of LPS-stimulated RAW264.7 cells. BDMC could effectively ameliorate RA by suppressing inflammatory reactions and inhibiting macrophage migration, more potentially than Cur.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Curcumin , Mice , Rats , Animals , NF-kappa B/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , NF-KappaB Inhibitor alpha/metabolism , Lipopolysaccharides/toxicity , Cyclooxygenase 2 , Inflammation/drug therapy , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Cytokines/metabolism , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , RAW 264.7 Cells , Diarylheptanoids/pharmacology , Diarylheptanoids/therapeutic use
7.
BMC Pharmacol Toxicol ; 24(1): 63, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37986186

ABSTRACT

OBJECTIVE: Inflammation and oxidative stress contribute to the pathogenesis of acute lung injury (ALI), and subsequently result in rapid deterioration in health. Considering the indispensable role of bisdemethoxycurcumin (BDMC) in inflammation and oxidative stress, the present study aims to examine the effect of BDMC on sepsis-related ALI. METHODS: C57BL/6 mice were administered with BDMC (100 mg/kg) or an equal volume of vehicle, and then injected with lipopolysaccharides (LPS) to induce ALI. We assessed the parameters of lung injury, inflammatory response and oxidative stress in lung tissues. Consistently, the macrophages with or without BDMC treatment were exposed to LPS to verify the effect of BDMC in vitro. RESULTS: BDMC suppressed LPS-induced lung injury, inflammation and oxidative stress in vivo and in vitro. Mechanistically, BDMC increased the phosphorylation of AMPKα in response to LPS stimulation, and AMPK inhibition with Compound C almost completely blunted the protective effect of BDMC in LPS-treated mice and macrophages. Moreover, we demonstrated that BDMC activated AMPKα via the cAMP/Epac pathway. CONCLUSION: Our study identifies the protective effect of BDMC against LPS-induced ALI, and the underlying mechanism may be related to the activation of cAMP/Epac/AMPKα signaling pathway.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Animals , Mice , Lipopolysaccharides/toxicity , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Mice, Inbred C57BL , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung , Inflammation/metabolism , Diarylheptanoids/therapeutic use , Diarylheptanoids/pharmacology , Guanine Nucleotide Exchange Factors/pharmacology
8.
Chem Biol Interact ; 386: 110771, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37866489

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common respiratory disease characterized by symptoms of shortness of breath and chronic inflammation. Curcuma zedoaria (Christm.) Roscoe is a well-documented traditional medical herb that is frequently used in the treatment of COPD. Previously, we identified a diarylheptanoid compound (1-(4-hydroxy-5-methoxyphenyl)-7-(4,5-dihydroxyphenyl)-3,5-dihydroxyheptane; abbreviated as HMDD) from this herb that exhibited potent agonistic activity on ß2-adrenergic receptors (ß2 adrenoreceptor) that are present on airway smooth muscle cells. In this work, we used chemically synthesized HMDD compound, and confirmed its bioactivity on ß2 adrenoreceptors. Then by a proteomics study and anti-inflammatory evaluation detections, we found that HMDD downregulated the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) signaling pathway and suppressed the NLRP3 receptor expression in RAW264.7 macrophages and in a COPD model in A549 lung carcinoma cells. HMDD also decreased nitric oxide production levels, and impacted other interleukins and the phosphorylation of NF-κB and ERK pathways. We performed molecular docking of HMDD on ß2 adrenoreceptor and NLRP3 protein models. This work reports the anti-inflammatory effects of HMDD and suggests a dual-targeting mechanism of ß2-adrenoreceptor agonism and NLRP3 inhibition. Such a mechanism scientifically supports the clinical uses of Curcuma zedoaria (Christm.) Roscoe in treating COPD, as it can simultaneously relieve persistent breathlessness and inflammation. HMDD can be considered as a potential non-steroidal anti-inflammatory drug in novel therapy design for the treatment of COPD and other inflammatory diseases.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Pulmonary Disease, Chronic Obstructive , Humans , Curcuma , Diarylheptanoids/pharmacology , Molecular Docking Simulation , Signal Transduction , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism , Inflammation/drug therapy , Pulmonary Disease, Chronic Obstructive/drug therapy
9.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686297

ABSTRACT

Four cyclic diarylheptanoids-carpinontriols A (1) and B (2), giffonin X (3) and 3,12,17-trihydroxytricyclo [12.3.1.12,6]nonadeca-1(18),2(19),3,5,14,16-hexaene-8,11-dione (4)-were isolated from Carpinus betulus (Betulaceae). Chemical stability of the isolated diarylheptanoids was evaluated as a function of storage temperature (-15, 5, 22 °C) and time (12 and 23 weeks). The effect of the solvent and the pH (1.2, 6.8, 7.4) on the stability of these diarylheptanoids was also investigated. Compounds 2 and 4 showed good stability both in aqueous and methanolic solutions at all investigated temperatures. Only 2 was stable at all three studied biorelevant pH values. Degradation products of 1 and 3 were formed by the elimination of a water molecule from the parent compounds, as confirmed by ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (UHPLC-HR-MS). The permeability of the compounds across biological membranes was evaluated by the parallel artificial membrane permeability assay (PAMPA). Compound 3 possesses a logPe value of -5.92 ± 0.04 in the blood-brain barrier-specific PAMPA-BBB study, indicating that it may be able to cross the blood-brain barrier via passive diffusion. The in vitro antiproliferative activity of the compounds was investigated against five human cancer cell lines, confirming that 1 inhibits cell proliferation in A2058 human metastatic melanoma cells.


Subject(s)
Betulaceae , Lepidoptera , Humans , Animals , Cell Membrane Permeability , Biological Assay , Blood-Brain Barrier , Diarylheptanoids/pharmacology
10.
Exp Eye Res ; 234: 109608, 2023 09.
Article in English | MEDLINE | ID: mdl-37517540

ABSTRACT

A simple and novel phytochemical-based nano-ophthalmic solution was developed for the treatment of eye diseases. This nanoformulation was produced from the mixture of the phytochemicals glycyrrhizin and alpha-glycosyl hesperidin, which serve as the phytonanomaterials that solubilize bisdemethoxycurcumin (BDMC), a promising phytochemical with strong pharmacological activities but with poor water solubility. This novel nanoformulation is a clear solution named as BDMC@phytomicelle ophthalmic solution, which was formulated using a simple preparation process. The BDMC@phytomicelles were characterized by a BDMC encapsulation efficiency of 98.37% ± 2.26%, a small phytomicelle size of 4.06 ± 0.22 nm, and a small polydispersity index of 0.25 ± 0.04. With the optimization of the BDMC@phytomicelles, the apparent solubility of BDMC (i.e., the loading of BDMC in the phytomicelles) in the simulated lacrimal fluid was 3.19 ± 0.02 mg/ml. The BDMC@phytomicelle ophthalmic solution demonstrated a good storage stability. Moreover, it did not cause irritations in rabbit eyes, and it facilitated the excellent corneal permeation of BDMC in mice. The BDMC@phytomicelles demonstrated a marked effect on the in vivo induction of corneal wound healing both in healthy and denervated corneas, as seen in the induction of corneal epithelial wound healing, recovery of corneal sensitivity, and increase in corneal subbasal nerve fiber density. These strong pharmacological activities involve the inhibition of hmgb1 signaling and the induction of VIP signaling. Overall, the BDMC@phytomicelle ophthalmic solution is a novel and promising simple ocular nano-formulation of BDMC with significantly improved in vivo profiles.


Subject(s)
Cornea , Diarylheptanoids , Mice , Animals , Rabbits , Diarylheptanoids/pharmacology , Wound Healing , Ophthalmic Solutions/pharmacology
11.
IET Nanobiotechnol ; 17(5): 420-424, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37194386

ABSTRACT

Hypoxic pulmonary hypertension (HPH) is a life-threatening disease that occurs due to a lack of oxygen in the lungs, leading to an increase in pulmonary vascular resistance, right ventricular failure, and ultimately death. HPH is a multifactorial disorder that involves multiple molecular pathways, making it a challenge for clinicians to identify effective therapies. Pulmonary artery smooth muscle cells (PASMCs) play a crucial role in HPH pathogenesis by proliferating, resisting apoptosis, and promoting vascular remodelling. Curcumin, a natural polyphenolic compound, has shown potential as a therapeutic agent for HPH by reducing pulmonary vascular resistance, inhibiting vascular remodelling, and promoting apoptosis of PASMCs. Regulation of PASMCs could significantly inhibits HPH. However, curcumin has the disadvantages of poor solubility and low bioavailability, and its derivative WZ35 has better biosafety. Here, Cu-based metal organic frameworks (MOFCu ) was fabricated to encapsulate the curcumin analogue WZ35 (MOFCu @WZ35) for the inhibition of PASMCs proliferation. The authors found that the MOFCu @WZ35 could promote the death of PASMCs. Furthermore, the authors believed that this drug delivery system will effectively alleviate the HPH.


Subject(s)
Curcumin , Metal-Organic Frameworks , Rats , Animals , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Curcumin/pharmacology , Curcumin/metabolism , Diarylheptanoids/metabolism , Diarylheptanoids/pharmacology , Vascular Remodeling/physiology , Myocytes, Smooth Muscle/metabolism , Cell Proliferation , Cells, Cultured
12.
J Biol Chem ; 299(6): 104814, 2023 06.
Article in English | MEDLINE | ID: mdl-37178919

ABSTRACT

Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma (LUAD) patients often respond to EGFR tyrosine kinase inhibitors (TKIs) initially but eventually develop resistance to TKIs. The switch of EGFR downstream signaling from TKI-sensitive to TKI-insensitive is a critical mechanism-driving resistance to TKIs. Identification of potential therapies to target EGFR effectively is a potential strategy to treat TKI-resistant LUADs. In this study, we developed a small molecule diarylheptanoid 35d, a curcumin derivative, that effectively suppressed EGFR protein expression, killed multiple TKI-resistant LUAD cells in vitro, and suppressed tumor growth of EGFR-mutant LUAD xenografts with variant TKI-resistant mechanisms including EGFR C797S mutations in vivo. Mechanically, 35d triggers heat shock protein 70-mediated lysosomal pathway through transcriptional activation of several components in the pathway, such as HSPA1B, to induce EGFR protein degradation. Interestingly, higher HSPA1B expression in LUAD tumors associated with longer survival of EGFR-mutant, TKI-treated patients, suggesting the role of HSPA1B on retarding TKI resistance and providing a rationale for combining 35d with EGFR TKIs. Our data showed that combination of 35d significantly inhibits tumor reprogression on osimertinib and prolongs mice survival. Overall, our results suggest 35d as a promising lead compound to suppress EGFR expression and provide important insights into the development of combination therapies for TKI-resistant LUADs, which could have translational potential for the treatment of this deadly disease.


Subject(s)
Adenocarcinoma of Lung , Diarylheptanoids , Drug Resistance, Neoplasm , Lung Neoplasms , Animals , Humans , Mice , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Cell Line, Tumor , Diarylheptanoids/pharmacology , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lysosomes/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology
13.
Int J Mol Sci ; 24(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37108568

ABSTRACT

Compounds derived from Curcuma longa L. (C. longa) have been extensively studied and reported to be effective and safe for the prevention and treatment of various diseases, but most research has been focused on curcuminoids derived from C. longa. As neurodegenerative diseases are associated with oxidation and inflammation, the present study aimed to isolate and identify active compounds other than curcuminoids from C. longa to develop substances to treat these diseases. Seventeen known compounds, including curcuminoids, were chromatographically isolated from the methanol extracts of C. longa, and their chemical structures were identified using 1D and 2D NMR spectroscopy. Among the isolated compounds, intermedin B exhibited the best antioxidant effect in the hippocampus and anti-inflammatory effect in microglia. Furthermore, intermedin B was confirmed to inhibit the nuclear translocation of NF-κB p-65 and IκBα, exerting anti-inflammatory effects and inhibiting the generation of reactive oxygen species, exerting neuroprotective effects. These results highlight the research value of active components other than curcuminoids in C. longa-derived compounds and suggest that intermedin B may be a promising candidate for the prevention of neurodegenerative diseases.


Subject(s)
NF-kappa B , Neuroprotective Agents , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Reactive Oxygen Species/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Microglia/metabolism , Curcuma/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hippocampus/metabolism , Diarylheptanoids/pharmacology , Lipopolysaccharides/pharmacology
14.
Fitoterapia ; 167: 105502, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37023930

ABSTRACT

Five new diarylheptanoids, kaemgalangins A-E (1-5), and seven known ones were isolated from the rhizomes of Kaempferia galanga. The structures of new compounds were identified by spectroscopic analyses involving 1D and 2D NMR, HRESIMS, IR, UV, [α]D, ECD calculations, and chemical methods. All compounds were tested for their hypoglycemic effects against α-glucosidase, Gpa and PTP1B enzymes, and stimulative effects on GLP-1 secretion. Kaemgalangins A (1) and E (5) showed significant inhibition on α-glucosidase with IC50 values of 45.3 and 116.0 µM; renealtin B (8) showed inhibition on GPa with an IC50 value of 68.1 µM; whereas all compounds were inactive to PTP1B. Docking study manifested that 1 well located in the catalytic pocket of α-glucosidase and OH-4″ played important roles in maintaining activity. Moreover, all compounds showed obviously stimulative effects on GLP-1 with promoting rates of 826.9%-1738.3% in NCI-H716 cells. This study suggests that the diarylheptanoids in K. galanga have antidiabetic potency by inhibiting α-glucosidase and Gpa enzymes, and promoting GLP-1 secretion.


Subject(s)
Alpinia , Zingiberaceae , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , alpha-Glucosidases , Rhizome/chemistry , Molecular Structure , Zingiberaceae/chemistry , Magnetic Resonance Spectroscopy , Diarylheptanoids/pharmacology , Diarylheptanoids/chemistry , Glycoside Hydrolase Inhibitors/pharmacology
15.
Bioorg Chem ; 133: 106435, 2023 04.
Article in English | MEDLINE | ID: mdl-36841049

ABSTRACT

Herein, we synthesized an affinity-based probe of myricanol (pMY) with a photo-affinity cross-linker to initiate a bioconjugation reaction, which was applied for target identification in live C2C12 myotubes. Pull-down of biotinylated pMY coupled with mass spectroscopy and Western blotting revealed that pMY can bind with nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme in the nicotinamide adenine dinucleotide salvage pathway. Cellular thermal shift assay, drug affinity responsive target stability assay and recombinant protein labeling further validated the direct interaction between myricanol and Nampt. Myricanol did not affect the protein expression of Nampt, but enhanced its activity. Knock-down of Nampt totally abolished the promoting effect of myricanol on insulin-stimulated glucose uptake in C2C12 myotubes. Taken together, myricanol sensitizes insulin action in myotubes through binding with and activating Nampt.


Subject(s)
Insulins , Nicotinamide Phosphoribosyltransferase , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/pharmacology , Muscle Fibers, Skeletal , Diarylheptanoids/pharmacology , Cytokines/metabolism , Insulins/metabolism , Insulins/pharmacology , NAD/metabolism
16.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674555

ABSTRACT

Cancer cells present high levels of oxidative stress, and although an increase in reactive oxygen species (ROS), such as H2O2, can lead to apoptosis, it can also induce cell invasion and metastasis. As the increase in ROS can lead to an increase in the expression of MMP-2 and MMP-9, thus causing the degradation of the extracellular matrix, an increase in the ROS H2O2 might have an impact on MMP-2/MMP-9 activity. The natural compound curcumin has shown some anticancer effects, although its bioavailability hinders its therapeutic potential. However, curcumin and its analogues were shown to resensitize kidney cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. This study shows that the curcuminoid EF24 in combination with TRAIL increases peroxidase activity in the renal adenocarcinoma cell line ACHN, reducing the level of intracellular H2O2 and MMP-2/MMP-9 activity, a mechanism that is also observed after treatment with curcumin and TRAIL.


Subject(s)
Carcinoma, Renal Cell , Curcumin , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Curcumin/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Hydrogen Peroxide/pharmacology , Diarylheptanoids/pharmacology , Reactive Oxygen Species/metabolism , Matrix Metalloproteinase 9/pharmacology , Matrix Metalloproteinase 2 , Cell Line, Tumor , Apoptosis , Kidney Neoplasms/drug therapy , Cell Movement
17.
J Ethnopharmacol ; 305: 116051, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36572324

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, curcuma longa L has been applied to treat pain and tumour-related symptoms for over thousands of years. Curcuminoids, polyphenolic compounds, are the main pharmacological component from the rhizome of Curcuma longa L. Pharmacological investigations have found that curcuminoids have many pharmacological activities of anti-inflammatory, anti-tumour, and anti-metastasis. AIM OF THE STUDY: 3ß-Hydroxysteroid dehydrogenase (3ß-HSD1) catalyses the production of steroid precursors for androgens and estrogens, which play an essential role in cancer metastasis. We explored the potency and mode of action of curcuminoids and their metabolites of inhibiting 3ß-HSD1 activity and compared the species difference between human and rat. MATERIALS AND METHODS: In this study, we investigated the direct inhibition of 6 curcuminoids on human placental 3ß-HSD1 activity and compared the species-dependent difference in human 3ß-HSD1 and rat placental homolog 3ß-HSD4. RESULTS: The inhibitory potency of curcuminoids on human 3ß-HSD1 was demethoxycurcumin (IC50, 0.18 µM) > bisdemethoxycurcumin (0.21 µM)>curcumin (2.41 µM)> dihydrocurcumin (4.13 µM)>tetrahydrocurcumin (15.78 µM)>octahydrocurcumin (ineffective at 100 µM). The inhibitory potency of curcuminoids on rat 3ß-HSD4 was bisdemethoxycurcumin (3.34 µM)>dihydrocurcumin (5.12 µM)>tetrahydrocurcumin (41.82 µM)>demethoxycurcumin (88.10 µM)>curcumin (137.06 µM)> octahydrocurcumin (ineffective at 100 µM). Human choriocarcinoma JAr cells with curcuminoid treatment showed that these chemicals had similar potency to inhibit progesterone secretion under basal and 8bromo-cAMP stimulated conditions. Docking analysis showed that all chemicals bind pregnenolone-binding site with mixed/competitive mode for 3ß-HSD. CONCLUSION: Some curcuminoids are potent human placental 3ß-HSD1 inhibitors, possibly being potential drugs to treat prostate cancer and breast cancer.


Subject(s)
Curcumin , Animals , Female , Humans , Pregnancy , Rats , 3-Hydroxysteroid Dehydrogenases/metabolism , Curcuma/chemistry , Curcumin/chemistry , Diarylheptanoids/pharmacology , Hydroxysteroid Dehydrogenases/metabolism , Placenta/metabolism , Structure-Activity Relationship
18.
Comb Chem High Throughput Screen ; 26(10): 1848-1855, 2023.
Article in English | MEDLINE | ID: mdl-36177634

ABSTRACT

OBJECTIVE: Myocardial ischemia-reperfusion (IR) injury is an unresolved medical problem with a high incidence. This study aims to analyze the novel molecular mechanism by which curcuminoids protect cardiomyocytes from IR injury. METHODS: A IR model In Vitro of rat cardiomyocytes H9c2 cells was structured. Curcumin (CUR) and its derivatives, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) treated H9c2 cells, and reactive oxygen species (ROS) production, viability, apoptosis, mitochondrial membrane potential (MMP), oxidative stress and total RNA m6A levels of H9c2 cells were detected by using DCFH-DA stain, CCK-8, flow cytometry, Hoechst 33342 stain, TMRM stain, ELISA and RTqPCR. FB23 was used in rescue experiments. RESULTS: IR significantly increased ROS production, decreased cell viability, and induced apoptosis, MMP loss, and oxidative stress. In addition, IR induced an increase in total RNA m6A levels and changes in m6A-related proteins expression. CUR (10 µM), DMC (10 µM) and BDMC (10 µM), significantly inhibited IR-induced ROS production, apoptosis, MMP loss and oxidative stress, and enhanced cell viability. Furthermore, CUR, DMC and BDMC altered the expression pattern of m6A-related proteins and reduced IR-induced total m6A levels. There was no significant difference in the effects of the three. CUR's protective effect was partially reduced by FB23. CONCLUSION: Curcuminoids attenuate myocardial IR injury by regulating total RNA m6A levels.


Subject(s)
Curcumin , Myocardial Reperfusion Injury , Rats , Animals , Diarylheptanoids/pharmacology , Diarylheptanoids/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Curcumin/pharmacology , Apoptosis , RNA/metabolism , Myocytes, Cardiac/metabolism
19.
Food Funct ; 13(24): 12697-12706, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36408594

ABSTRACT

Turmeric (Curcuma longa) had been considered as a universal panacea in functional foods and traditional medicines. In recent, the sedative-hypnotic effect of turmeric extract (TE) was reported. However, sleep-promoting compounds in TE have been not yet demonstrated. Curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) are the major constituents of turmeric being responsible for its various biological activities. Therefore, they can be first assumed to be sedative-hypnotic compounds of TE. In the present study, we aimed to investigate the effects and underlying mechanisms of curcuminoids and each constituent on the sleep-wake cycle of mice. Molecular docking studies, histamine H1 receptor (H1R) binding assays, and H1R knockout animal studies were used to investigate the molecular mechanisms underlying the sleep-promoting effects. Curcuminoids and their constituents reduced sleep latency and increased sleep duration in the pentobarbital-induced sleep test in mice. In addition, curcuminoids significantly increased the duration of NREMS and reduced sleep latency without altering the REMS and delta activity. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin were predicted to interact with H1R in the molecular model. In the binding affinity assay, we found that curcuminoids, as well as their constituents, significantly bind to H1R with the Ki value of 1.49 µg mL-1. Furthermore, sleep latency was reduced and NREMS frequency was increased following curcuminoid administration in wild-type mice but not in H1R knockout mice. Therefore, we conclude that curcuminoids reduce sleep latency and enhance the quantity of NREMS by acting as modulators of H1R, indicating their usefulness in treating insomnia.


Subject(s)
Curcuma , Curcumin , Diarylheptanoids , Receptors, Histamine H1 , Sleep Aids, Pharmaceutical , Sleep Latency , Sleep, REM , Animals , Mice , Curcuma/chemistry , Curcumin/chemistry , Curcumin/pharmacology , Diarylheptanoids/pharmacology , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Receptors, Histamine H1/genetics , Receptors, Histamine H1/metabolism , Sleep Latency/drug effects , Sleep, REM/drug effects , Sleep Aids, Pharmaceutical/chemistry , Sleep Aids, Pharmaceutical/pharmacology
20.
Molecules ; 27(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36364236

ABSTRACT

Turmeric spice contains curcuminoids, which are polyphenolic compounds found in the Curcuma longa plant's rhizome. This class of molecules includes curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Using prostate cancer cell lines PC3, LNCaP, DU145, and C42B, we show that curcuminoids inhibit cell proliferation (measured by MTT assay) and induce apoptosis-like cell death (measured by DNA/histone ELISA). A copper chelator (neocuproine) and reactive oxygen species scavengers (thiourea for hydroxyl radical, superoxide dismutase for superoxide anion, and catalase for hydrogen peroxide) significantly inhibit this reaction, thus demonstrating that intracellular copper reacts with curcuminoids in cancer cells to cause DNA damage via ROS generation. We further show that copper-supplemented media sensitize normal breast epithelial cells (MCF-10A) to curcumin-mediated growth inhibition, as determined by decreased cell proliferation. Copper supplementation results in increased expression of copper transporters CTR1 and ATP7A in MCF-10A cells, which is attenuated by the addition of curcumin in the medium. We propose that the copper-mediated, ROS-induced mechanism of selective cell death of cancer cells may in part explain the anticancer effects of curcuminoids.


Subject(s)
Curcumin , Neoplasms , Male , Humans , Copper/pharmacology , Reactive Oxygen Species/metabolism , Curcuma/metabolism , Diarylheptanoids/pharmacology , Apoptosis , Oxidation-Reduction , Hydrogen Peroxide/pharmacology , Genomics , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...